

8-bit
Microcontrollers

Application Note

Rev. 8066A-AVR-04/08

AVR1315: Accessing the XMEGA EEPROM

Features
• I/O-mapped access
• Memory-mapped access
• Split erase and write operations supported
• Efficient page-oriented access
• Driver source code included

1 Introduction
This application note describes the basic functionality of the XMEGA™ EEPROM
with code examples to get up and running quickly. A driver interface written in C is
included as well.

Figure 1-1. EEPROM Overview

I/O
Registers

Memory-
mapped

EEPROM

Internal
SRAM

External
Memory

Bus

D
at

a
Sp

ac
e

NVM
Interface

EEPROM
Memory

NVM Control Registers

2 AVR1315
8066A-AVR-04/08

2 EEPROM Overview
This section provides an overview of the functionality and basic configuration options
of the EEPROM. Section 3 then walks you through the basic steps to get you up and
running, with register descriptions and configuration details.

2.1 The Non-volatile Memory Controller
The XMEGA EEPROM is accessed through the Non-volatile Memory (NVM)
controller, which is also used for access to fuse and lock bits and for updating Flash
memory from software. Please refer to the application note “AVR1316: XMEGA
Bootloader” or the device datasheet for more details.

As the NVM controller not only serves the EEPROM memory, it is important to check
that the NVM controller is not busy with other operations (such as Flash memory
update) before using it to access EEPROM. The NVM Busy bit (NVMBUSY) in the
NVM Status register (STATUS) is set whenever the NVM controller is busy.

Using the NVM to access EEPROM involves using NVM Commands. There are
commands for erasing, writing, reading etc. The procedure for issuing a command is
as follows:

1. Wait for any previous NVM operations to finish.
2. Load necessary information into the Address registers (ADDRn) and/or the Data

registers (DATAn). This will be described in later sections.
3. Load the command code into the Command register (CMD).
4. Load the Protect IO Register signature (byte value 0xD8) into the Configuration

Change Protection register (CCP). This will automatically disable all interrupts for
the next four CPU instruction cycles.

5. Within the next four CPU instruction cycles, set the Command Execute bit
(CMDEX) in NVM Control Register A (CTRLA).

6. The operation is finished when the NVM Busy bit (NVMBUSY) is cleared.

The relevant command codes and their use are described in the following sections.

By setting the EEPROM Mapping Enable bit (EEMAPEN) in NVM Control Register B
(CTRLB), EEPROM access is mapped to data memory space instead of using the
NVM controller. However, one must still check that the NVM is not busy before
accessing EEPROM, as the NVM is used internally. Memory-mapped access is
covered in Section 3.2.

2.2 Erasing and Writing
There are two ways to update the EEPROM memory: atomic write and split operation.
With atomic write, EEPROM locations are erased and written in one operation. With
split operation, erasing and writing are separate operations.

When erasing the EEPROM locations, all bits are set to logic one. A split write can
then program selected bits to logic zero. Split write operations cannot change a bit
from zero to one, as opposed to an atomic write that first erase to logic one and then
writes logic zeros to selected bits. This means that multiple writes with different
values eventually results in all locations being logic zeros, if the locations are not

 AVR1315

erased in between. This is similar to a logic AND operation between existing value
and written value.

An atomic write takes approximately twice the time of one erase or one write.
Therefore, split operation can be used to save time by erasing EEPROM locations in
advance, e.g. during initialization. For instance, if the application needs to store vital
data when a power drop is detected, a split write will take less time than an atomic
write.

Another useful application for the split operation is to increase EEPROM endurance,
especially for applications that update EEPROM locations frequently. By
implementing a scheme where EEPROM locations are not erased unless they have
to, the split operation feature can be used to increase EEPROM endurance. For more
details, refer to the application note “AVR101: High Endurance EEPROM Storage”.

Different erase and write operations, together with byte values before and after the
operation, are illustrated in Figure 2-1 below.

Figure 2-1. Atomic Write, Split Write and Erase Operations

0 1 0 1 0 1 1 10x57

1 1 0 1 0 0 0 00xD0

Atomic write: 0xD0

0 1 0 1 0 1 1 10x57

1 1 1 1 1 1 1 10xFF

Erase

0 1 0 1 0 1 1 10x57

0 1 0 1 0 0 0 00x50

Split write: 0xF0

1 1 1 1 1 1 1 10xFF

1 1 1 1 0 0 0 00xF0

Split write: 0xF0

2.3 The Temporary Page Buffer
The EEPROM memory is organized in pages, and both erase and write operations
operate on pages. The page size depends on memory size and is given in the device
datasheet. Erase and write operations use a temporary page buffer, both to keep
track of which bytes in a page should be accessed and, for write operations the data
itself.

A write operation actually consists of two operations: (1) loading the page buffer with
data and (2) writing data to an EEPROM page. When loading the page buffer, the
lower part of the EEPROM address is used to select a byte in the page buffer, while
the upper part is ignored. When writing or erasing a page, the upper part of the
address selects the page, while the lower part is ignored.

Figure 2-2 below shows an example where one byte is loaded into the page buffer
and the buffer is written to an EEPROM page afterwards. The figure shows that the
buffer location that was loaded gets tagged so that the page buffer knows which byte
locations need to be written.

For a page erase operation, only the bytes that are tagged in the buffer will be erased
in EEPROM. Unless you plan to perform a write afterwards, the actual values in the
buffer do not matter.

 3

8066A-AVR-04/08

4 AVR1315

Figure 2-2. Example Buffer Load and Page Write with a 32-byte Buffer

0 1 2 29 30 31

0x0102 Data
byte

Page Buffer

EEPROM Address

0 1 2 29 30 31

0x0102

Page Buffer

EEPROM Address

7 8 9 10 11

EEPROM Pages

Load Page Buffer

Write Page

Once a byte has been loaded into the buffer, the EEPROM Page Buffer Active
Loading bit (EELOAD) in the NVM Status register (STATUS) will be set. The bit
remains set until either the buffer is flushed or a page write is performed (atomic or
split write). To flush the page buffer, issue the EEPROM Flush Page Buffer command
(byte value 0x36) to the NVM controller. Erase and write commands are covered in
Section 3.1.

Note that if multiple bytes are loaded to the same buffer location, the resulting value is
a logical AND between existing data and the new data, similar to what happens
during page write operations.

2.4 DMA Considerations
When using DMA and EEPROM in the same application, it should be considered that
the DMA controller cannot access the EEPROM when the CPU is in any sleep mode.
An ongoing DMA transaction will be aborted if an access is attempted during sleep.
Please refer to the application note “AVR1304: Using the XMEGA DMA Controller” for
more information.

2.5 Interrupt Considerations
When using interrupts and EEPROM in the same application, the following should be
considered:

• Take care not to corrupt the EEPROM page buffer contents. When loading the
page buffer, make sure that no interrupt handlers access the page buffer. Or, if an
interrupt handler is used to access the page buffer, make sure that other parts of
the application do not access it at the same time.

• Instead of continuously polling the NVM Busy flag (NVMBUSY) to detect when an
NVM operation is finished, it is possible to enable the EEPROM Interrupt by
setting an appropriate interrupt level with the EEPROM Interrupt Level bitfield

8066A-AVR-04/08

 AVR1315

 5

8066A-AVR-04/08

(EELVL) in the Interrupt Control register (INTCTRL). The corresponding interrupt
handler will be called whenever the NVM Busy flag (NVMBUSY) is not set. For
instance, this can be used to implement an interrupt-controlled EEPROM update.
More details on interrupts can be found in application note “AVR1305: XMEGA
Interrupts and the Programmable Multi-level Interrupt Controller”.

3 Getting Started
This section walks you through the basic steps for getting up and running with the
XMEGA EEPROM. The necessary registers are described along with relevant bit
settings.

3.1 I/O-mapped Access
I/O-mapped access means that all EEPROM access is done using I/O registers in the
NVM controller and issuing NVM commands.

3.1.1 Reading EEPROM

The steps to read an EEPROM location are as follows:

1. Wait for any previous NVM operations to finish.
2. Load the NVM Address registers (ADDRn) with the desired EEPROM byte

address.
3. Issue the EEPROM Read command (byte value 0x06) to the NVM controller.
4. The CPU will be halted two clock cycles and then data is available in NVM Data

Register 0 (DATA0). There is no need to wait for the NVM Busy bit to clear.

This operation is not supported if memory-mapped EEPROM access is enabled.

3.1.2 Loading EEPROM Page Buffer

The steps to load a byte into the temporary page buffer are as follows:

1. Wait for any previous NVM operations to finish.
2. Load the EEPROM Load Page Buffer command (byte value 0x33) into the NVM

Command register (CMD).
3. Load the NVM Address registers (ADDRn) with the desired EEPROM byte

address.
4. Load NVM Data Register 0 (DATA0) with the data byte. This automatically

triggers the buffer load operation. This is a command that does not require the
Command Execute bit (CMDEX) in NVM Control Register A (CTRLA) to be set.
The CPU will be halted for one clock cycle during this operation.

It is important that the write to the data register is done last, as this triggers the
operation itself. The order of the other steps is not important.

This operation is not supported if memory-mapped EEPROM access is enabled.

3.1.3 Atomic Write (Erase and Write) EEPROM Page

The steps to erase a page and write prepared page buffer data to the page is as
follows:

6 AVR1315
8066A-AVR-04/08

1. Wait for any previous NVM operations to finish.
2. Load the NVM Address registers (ADDRn) with an EEPROM address within the

page to be updated.
3. Issue the EEPROM Atomic Write command (byte value 0x35) to the NVM

controller.
4. The operation is finished when the NVM Busy bit is cleared.

Only the buffer locations that have been loaded will be updated in the EEPROM
page.

3.1.4 Erase EEPROM Page

The steps to erase a page without writing anything are as follows:

1. Wait for any previous NVM operations to finish.
2. Load the NVM Address registers (ADDRn) with an EEPROM address within the

page to be erased.
3. Issue the EEPROM Erase Page command (byte value 0x32) to the NVM

controller.
4. The operation is finished when the NVM Busy bit is cleared.

Only the buffer locations that have been loaded will be erased in the EEPROM page.
Therefore, dummy bytes should be loaded into every buffer location corresponding to
the bytes you want to erase from the EEPROM page.

3.1.5 Split Write (Write Only) EEPROM Page

The steps to write prepared page buffer data to an already erased page are as
follows:

1. Wait for any previous NVM operations to finish.
2. Load the NVM Address registers (ADDRn) with an EEPROM address within the

page to be updated.
3. Issue the EEPROM Split Write command (byte value 0x34) to the NVM

controller.
4. The operation is finished when the NVM Busy bit is cleared.

Only the buffer locations that have been loaded will be updated in the EEPROM
page.

3.2 Memory-mapped Access
Memory-mapped access means that EEPROM read and page buffer load operations
are mapped into data space. This means that EEPROM data can be read simply by
reading from a location in data memory. For the XMEGA A1 family, memory-mapped
EEPROM starts at address 0x1000.

Page buffer loading is also simply a matter of writing to data memory. However,
flushing the buffer and erasing and writing pages must still be done through the NVM
controller as for I/O-mapped access. Also, the NVM controller must not be busy when
accessing EEPROM.

 AVR1315

 7

8066A-AVR-04/08

The necessary steps to perform an atomic write using memory-mapped access are
as follows:

1. Wait for any pervious NVM operations to finish.
2. Load page buffer by writing directly to data space, while staying inside one

EEPROM page.
3. Load the NVM Address registers (ADDRn) with an EEPROM address within the

page to be updated.
4. Issue the EEPROM Atomic Write command (byte value 0x35) to the NVM

controller.
5. The operation is finished when the NVM Busy bit is cleared.

The procedure is similar for erase and split write operations. In short, reading data
and loading the page buffer is replaced by memory-mapped access. The rest is
similar to I/O-mapped access. Please refer to the code examples of this application
note for more details.

4 Driver Implementation
This application note includes a source code package with a basic EEPROM driver
implemented in C. It is written for the IAR Embedded Workbench® compiler.

Note that this EEPROM driver is not intended for use with high-performance code. It
is designed as a library to get started with the EEPROM. For timing and code space
critical application development, you should access the EEPROM (NVM) registers
directly. Please refer to the driver source code and device datasheet for more details.

4.1 Files
The source code package consists of three files:

• eeprom_driver.c – EEPROM driver source file
• eeprom_driver.h – EEPROM driver header file
• eeprom_example.c – Example code using the driver

For a complete overview of the available driver interface functions and their use,
please refer to the source code documentation.

4.2 Doxygen Documentation
All source code is prepared for automatic documentation generation using Doxygen.
Doxygen is a tool for generating documentation from source code by analyzing the
source code and using special keywords. For more details about Doxygen please visit
http://www.doxygen.org. Precompiled Doxygen documentation is also supplied with
the source code accompanying this application note, available from the readme.html
file in the source code folder.

http://www.doxygen.org/

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

8066A-AVR-04/08

	1 Introduction
	2 EEPROM Overview
	2.1 The Non-volatile Memory Controller
	2.2 Erasing and Writing
	2.3 The Temporary Page Buffer
	2.4 DMA Considerations
	2.5 Interrupt Considerations

	3 Getting Started
	3.1 I/O-mapped Access
	3.1.1 Reading EEPROM
	3.1.2 Loading EEPROM Page Buffer
	3.1.3 Atomic Write (Erase and Write) EEPROM Page
	3.1.4 Erase EEPROM Page
	3.1.5 Split Write (Write Only) EEPROM Page

	3.2 Memory-mapped Access

	4 Driver Implementation
	4.1 Files
	4.2 Doxygen Documentation

